Contents

368. Largest Divisible Subset

Problem

Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies:

$$S_i \bmod S_j = 0$$ or $$S_j \bmod S_i = 0$$.

If there are multiple solutions, return any subset is fine.

example 1

1
2
Input: [1,2,3]
Output: [1,2] (of course, [1,3] will also be ok)

example 2

1
2
Input: [1,2,4,8]
Output: [1,2,4,8]

Solution

HashMap

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
func largestDivisibleSubset(nums []int) []int {
    haveOne := false
    sort.Ints(nums)
    q := make(map[int][]int, 0)
    for idx :=range nums {
        if nums[idx] == 1 {
            haveOne = true
            continue
        }
        q[nums[idx]] = []int{}
        for jdx:=idx+1; jdx<len(nums); jdx++ {
            if nums[jdx]%nums[idx] == 0 {
                q[nums[idx]] = append(q[nums[idx]], nums[jdx])
            }
        }
    }
                  
    var w []int
    
    for idx:= range q {
        res := helper(q, idx)
        
        if len(res)>len(w) {
            w = res
        }
    }
    if haveOne {
        return  append([]int{1}, w...)
    }
    return w
}

func helper(q map[int][]int, idx int) []int {
    if _, ok := q[idx]; !ok {
        return []int{}
    }
    
    if len(q[idx]) == 0 {
        return []int{idx}
    }
    
    tmp := []int{}
    for jdx := range q[idx] {
        w := helper (q, q[idx][jdx])
        if len(w) == len(q[idx]) {
            return append([]int{idx}, w...)
        }
        if len(w)>len(tmp) {
            tmp = w
        }
    }
    return append([]int{idx}, tmp...)
}